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 1 Introduction
MicroBooNE is an approved experiment at Fermilab to build a large liquid Argon Time Projection 
Chamber (LArTPC) to be exposed to the Booster neutrino beam and the NuMI beam at Fermilab. 
The experiment will address the low energy excess observed by the MiniBooNE experiment, 
measure low energy neutrino cross sections, and serve as the necessary next step in a phased 
program towards massive Liquid Argon TPC detectors.

MicroBooNE liquid argon time projection chamber consists of a rectangular grid of wires installed 
in a cylindrical argon vessel. Heat through the insulation will cause natural convection up around 
the vessel shell and down in the middle. The liquid velocity varies depending on location and 
direction of flow. This analysis should evaluate the effect of flow on the wires:

How much will the wires deflect due to drag (static analysis)?
How much will the wires deflect due to vortex shedding (dynamic analysis)?
How sensitive are these deflections to wire tension?

 1.1 General parameters for the study
Wire length: l = 2.5 m.
Wire diameter: D = 150x10-6 m (cross section A0)
Wire density: ρw = 7800 kg/m3.
Wire Tension: T = 10 N.
Liquid argon density: ρl = 1395 kg/m3 at saturation point.
Liquid argon dynamic viscosity: μ = 259.79x10-6 Pa.s at saturation point.
Maximum transverse liquid argon velocity on wire: V =1.25x10-2 m/s (fig.1)

 2 Static Analysis

 2.1 Catenary
It is common knowledge that uniform density cables tensioned in a uniform gravity field 
(y-direction) hang in the form of a catenary, with vertical deflection:
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Here T is the horizontal (x-direction) component of tension which is uniform from one end of the 
wire of length l to the other. The weight of the wire per unit length w is also assumed uniform along 
the wire.

For highly tensioned wires, substitution of the first 2 terms of the power series of the cosh terms 
gives a simple parabolic approximation:
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 2.2 Elastic Catenary
The catenary model assumes that the wire or chain can not transmit bending or torsional moments. 
It is a structure made up of inextensible links joined with complete angular flexibility. The catenary 
formula depends only on tension and weight/length. Neither elastic modulus nor wire diameter 
appears in the equations, no elastic energy is stored.

For real wires, stretch and bending stiffness modify the catenary form, even for thin wires. The case 



of the stretchable elastic catenary is covered by Irvine [1]. The main effect of stretching is a 
reduction of the weight/length thus reducing the wire deflection.

Stress across the wire section area A0 is σ = T/A0 and the wire strain is ε=Δl/l = T/(E.A0) (wire 
elastic modulus E). When tensioned, wire stretches by ε*l reducing the weight/length by 1/(1+ε). 
The parabolic approximation for the mid span sag of a stretchable wire then becomes:
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At first order, ymax varies like 1/T (ε contributes to 1/T2). ε being generally small (less than a 
percent), elastic catenary modelisation yields results similar to the pure catenary model.

 2.3 Wires of the MicroBooNE Time projection Chamber
The wires are in a vertical plane (y-direction), so gravity does not play a role on their deflection, 
and subjected to drag forces (x-direction) generated by the surrounding liquid argon convection 
movements.

The general form of the drag force FD (per unit length l) generated by a fluid of density ρl and 
velocity V, on a wire of diameter D is:

F D=
1
2

ρl D V 2 C D (5)

CD being the drag coefficient for a cylinder and depends upon the Reynold number (Re) of the fluid.

Substituting w by FD in equation (2) and inverting x and y axis gives the deflection of a stretched 
wire subjected to a uniform perpendicular drag force:
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 2.4 Wire Static Deflection Calculations
CD can be evaluated using [2] and fig. 2. Reynolds number in these conditions is Re ≈ 10, then:

CD ≈ 3
thus:

xmax ≈ 4 μm and  xmax varies like 1/T

 3 Dynamic Analysis
The following analysis is presented for vortex shedding from a circular cylinder. If the frequency at 
which the vortices are shed is near the natural frequencies of the stretched wire then large amplitude 
vibrations exist.

The first step is to characterize the dynamics of the wire, then vortex shedding frequency range to 
finally evaluate the forced response of the system.

Effect of liquid argon viscous damping is finally addressed.

 3.1 Normal Modes of an Undamped Stretched Wire
Considering only the transverse x-dimension, Newton's second law of motion takes the form:

A0 ρw
δ2 x  y ,t 

δt 2 =T δ2 x  y , t 
δy2 F D (8)



The classical resolution leads to the normal modes frequencies:

f n=
n
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 (9) The fundamental frequency (n=1) is f1 ≈ 54 Hz.

 3.2 Frequency of Vortex Shedding Excitation from a Circular Cylinder
The frequency of vortex shedding excitation is given by:

f vs=
V S t

D (10) St being the Strouhal Number.

St is a function of the Reynolds number [3] and is in the range [0; 0.3] (fig. 3). Below Re ≈ 100, it is 
usually admitted that no vortex shedding will develop thus the flow is completely laminar and the 
static drag applies (in our case Re ≈ 10).

For being conservative, i.e. vortex shedding developing, let St = 0.2 then fvs = 17 Hz – below the 
fundamental frequency (54 Hz) of the wire.

The required fluid velocity to get fVS close to the fundamental wire frequency is about 4x10-2 m/s (a 
factor 3 more). Nevertheless, at this velocity Re ≈ 30 and still no vortex shedding should develop.

 3.3 Forced Response of an Undamped Wire Subject to Vortex 
Shedding Harmonic Excitation

Vortex shedding harmonic excitation, per unit length, is FVS = FD sin(ωvst). Taking into account a 
one transverse degree of freedom model, the forced response equation is:
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and, using equation (5) and (10): F D= ρl
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Substituting equation (14) into equation (11), one obtains:
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The harmonic excitation is of “frequency-squared” type, general steady-state solution can be 
derived [4] and is of the form:
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 3.4 Wire Dynamic Deflection and Sensitivity
Rewriting equation (17) using equation (18) to show the St2 dependency of the amplitude X:
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and considering that CD ≈ 3 and St is in the range [0; 0,3], one obtains the bounding values for X:

X ≈ [3; 4] μm
X varies like (1/T), augmenting the wire tension T reduces proportionally the dynamic deflection.

 3.5 Effect of Liquid Argon Viscous Damping
The effect of viscous damping is twofold: rsing the frequency ratio at which the steady-state 
amplitude is maximum (rmax) and reducing the steady-state amplitude X.

For the frequency ratio, the following equation will hold:

rmax=
1
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with ζ= γ

2 ω1

the damping ratio and γ=
F D

A0 ρw V
the effective damping [s-1].

Taking the same parameters, one obtains:

γ = 28.5 s-1 , ζ = 4x10-2 and rmax = 1.002 meaning that viscous damping is negligible.

For the steady-state amplitude, the term 
r 2

1−r2 
 in equation (17) is replaced by :
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1−r2 22ζr 2
which is 99.96% of 
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.

 4 Conclusion
Analytical expressions of the deflection of a wire subjected to viscous drag have been presented in 
both static and dynamic situations.

For the static case, the maximum wire deflection is 4 μm and varies like 1/T – T tension in the wire.

For the dynamic case and taking into account the expected maximum transverse fluid velocity on 
the wire, no dynamic effect should develop. Nevertheless, a conservative value of the dynamic 
deflection has been evaluated in the range [3; 4] μm, varying also like 1/T. Viscous damping for the 
dynamic case is negligible.

 5 References
[1] H. Max Irvine, “Cable Structures”, MIT Press, 1981
[2] H. Schlichting, “Boundary Layer Theory”, 7th ed. New York: McGraw-Hill, 1979
[3] F.M. White, “Fluid Mechanics”, 4th ed., WCB McGraw-Hill, Boston, 1999
[4] K.S. Graham, “Fundamentals of Mechanical Vibrations”, 2nd ed., McGraw-Hill, 2000



Figure 1: Horizontal velocity of liquid argon along the outermost wire of the time projection 
chamber (courtesy R. Schmitt)
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Figure 2: Average drag coefficient CD for cross-flow over a smooth circular cylinder (from [2])



Figure 3: Strouhal number (from [3])
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